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Dynamic simulations of the inhomogeneous
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We have simulated the dynamics of suspensions of fibres sedimenting in the limit of
zero Reynolds number. In these simulations, the dominant inter-particle force arises
from hydrodynamic interactions between the rigid, non-Brownian fibres. The simula-
tion algorithm uses slender-body theory to model the linear and rotational velocities
of each fibre. To include far-field interactions between the fibres, the line distribution
of force on each fibre is approximated by making a Legendre polynomial expansion of
the disturbance velocity on the fibre, where only the first two terms of the expansion
are retained in the calculation. Thus, the resulting linear force distribution can be
specified completely by a centre-of-mass force, a couple, and a stresslet. Short-range
interactions between particles are included using a lubrication approximation, and an
infinite suspension is simulated by using periodic boundary conditions. Our numeri-
cal results confirm that the sedimentation of these non-spherical, orientable particles
differs qualitatively from the sedimentation of spherical particles. The simulations
demonstrate that an initially homogeneous, settling suspension develops clusters,
or streamers, which are particle rich surrounded by clarified fluid. The instability
which causes the heterogeneous structure arises solely from hydrodynamic interac-
tions which couple the particle orientation and the sedimentation rate in particle
clusters. Depending upon the concentration and aspect ratio, the formation of clus-
ters of particles can enhance the sedimentation rate of the suspension to a value in
excess of the maximum settling speed of an isolated particle. The suspension of fibres
tends to orient with gravity during the sedimentation process. The average velocities
and orientations, as well as their distributions, compare favourably with previous
experimental measurements.

1. Introduction
The idea that the sedimentation of non-spherical, orientable particles differs qual-

itatively from the sedimentation of spherical particles is currently supported by
theoretical calculations and experimental evidence. In the limit of sedimentation
at zero Reynolds number and in the absence of Brownian motion (infinite Péclet
number) as well as nonhydrodynamic interparticle forces, an initially homogeneous
suspension of rigid fibres can develop clusters or streamers which are particle rich,
surrounded by clarified fluid. Though the particles are non-colloidal, they appear
to flocculate during sedimentation as observed in the experiments of Herzhaft et al.
(1996) and Herzhaft & Guazzelli (1999). In contrast, sedimenting suspensions of
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spherical particles apparently do not suffer from a similar instability in particle
concentration.

The instability of a suspension of fibres during sedimentation was originally pre-
dicted by the calculations of Koch & Shaqfeh (1989). The instability arises from
the coupling of sedimentation velocity and particle orientation which renders the
homogeneous settling state unstable to fluctuations in the particle volume fraction.
Koch & Shaqfeh (1989) showed that hydrodynamic interactions between pairs of
sedimenting spheroids induces a preferential alignment of the fibres which leads to
a decrease in the average separation distance. A subsequent analysis of the stability
of a suspension to horizontal fluctuations in the concentration of particles suggested
that the particles would form streamers in the direction of gravity. In regions where
the perturbed particle concentration is higher than in the bulk of the suspension,
there is a downward convection of particles. In the less concentrated regions, the fluid
primarily moves in the direction opposite to gravity. The relative shear between the
high and low regions of concentration induces an alignment of fibres which causes
a preference for particles to drift towards the concentrated region, thus magnifying
the concentration gradient. Additionally, Koch & Shaqfeh (1989) suggested that the
clustering of particles would result in an enhanced rate of sedimentation.

Given the importance of sedimentation to natural phenomena such as the deposit
of river sediment and to industrial processes such as particulate separations, both
experimental and numerical work has been pursued by researchers in order to as-
certain the accuracy and implications of the calculations made by Koch & Shaqfeh
(1989). Experiments by Herzhaft et al. (1996) and Herzhaft & Guazzelli (1999) have
confirmed the existence of an instability. In these experiments, suspensions of glass
rods sedimenting within a fluid with a refractive index which matched that of the par-
ticles were examined. A small fraction of the particles were marked and then tracked
with a digital imaging system during the sedimentation process. Particle velocities,
fluctuations, and orientations of the fibres were studied for a range of particle aspect
ratios and number densities within the dilute and semi-dilute concentration regimes.

As already mentioned, these experiments gave visual verification of the instability
of fibre sedimentation; pictures of the sedimenting suspension clearly show the
presence of large-scale inhomogeneities in the particle distribution. The experiments
also show that particles tend to align in the gravitational direction. For small number
densities, the sedimentation velocity was found to exceed the rate expected for a well-
mixed, homogeneous suspension. For some fibre aspect ratios and concentrations, the
suspension was found to sediment with a velocity in excess of the settling velocity of
an isolated fibre which is aligned with gravity and sedimenting in a fluid of infinite
extent.

Other experiments on the sedimentation of non-Brownian fibres include those of
Turney et al. (1995). Using magnetic resonance imaging, they estimated the settling
velocity from measurements of the time variation of the diffuse interface between the
supernatant and suspension. No evidence of an instability was observed since these
measurements were made for volume fractions higher than the volume fractions at
which other workers have observed enhanced sedimentation velocities. The sedimen-
tation rates were found to agree well with those measured by Herzhaft & Guazzelli
(1999) at the same concentrations.

In addition to these experimental studies, simulations of sedimentation for sus-
pensions of rigid fibres of high aspect ratio have also been completed. Claeys &
Brady (1993c) simulated the sedimentation of a periodic array of spheroids using
the algorithm described in Claeys & Brady (1993a, b). The method is similar to the
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Stokesian dynamics method which has been successfully used to simulate suspensions
of spherical particles (Durlofsky, Brady & Bossis 1987; Brady & Bossis 1988). Claeys
& Brady (1993c) calculated the sedimentation rate as a function of concentration, but
the particles were confined to an organized, crystalline lattice for these simulations.
Thus, the results were unable to predict the change in orientation distribution, centre-
of-mass distribution, sedimentation velocity, and other properties which occurs in a
disordered suspension.

In a recent work, Kuusela, Höfler & Schwarzer (2001) calculated the dynamics of
a suspension of spheroids of aspect ratio 5 sedimenting at a finite Reynolds number
of 0.3. The calculation was made using a finite difference method as described in
detail by Höfler & Schwarzer (2000). The calculations of Höfler & Schwarzer (2000)
showed that a fibre which falls at a small, but finite, Reynolds number will rotate
until the orientation becomes horizontal. This is an important difference compared to
sedimentation of fibres in the Stokes regime, or in the limit of zero Reynolds number;
in that case an isolated fibre will not change orientation during sedimentation.
Observations made in the experiments of Herzhaft et al. (1996) and Herzhaft &
Guazzelli (1999) indicate that an individual fibre falls without changing orientation.
Thus the orientation of fibres in the experiments is influenced only by hydrodynamic
interactions with other fibres and the walls, and not influenced by inertia. Even though
the fibres in the simulations of Kuusela et al. (2001) are influenced by the affects of
inertia, the results do show some similar behaviour to the experiments. For example,
the results indicate that as the volume fraction of the particles increases, the average
sedimentation velocity begins to increase and then decreases. However, the maximum
in the average sedimentation rate of the particles did not exceed the sedimentation
velocity of a particle aligned with gravity as observed in the experiments. This
maximum was mainly attributed to the change in the average orientation of the
particles at steady state as a function of the bulk value of the particle number
density. The authors state that a ‘visual inspection’ of the structure of the simulated
suspension reveals a non-homogeneous distribution of spheroids, but unfortunately,
no attempt was made to quantify the centre-of-mass distribution of the particles.

Mackaplow & Shaqfeh (1998) reported on the results from two types of sim-
ulations: Monte Carlo simulations and point-particle simulations. They performed
Monte Carlo simulations to calculate the average velocities of sedimentation assuming
a statistical distribution of particle positions and orientations. Evolving the particle
positions in time when using their method was, however, too computationally inten-
sive. To overcome this difficulty, dynamic point-particle simulations were developed
by Mackaplow & Shaqfeh (1998). In this method, the disturbance due to a point
force replaces the disturbance due to a fibre and the mobility of each point force
depends on the orientation in the same manner as that of a rigid fibre of high aspect
ratio. Using these simplifications, which are appropriate in the dilute regime, dynamic
simulations were completed. The simulations showed that fibres in a suspension with
initially homogeneous distributions of the centre of mass and orientation develop
an orientation which is preferentially aligned with the gravitational direction. The
particles also cluster and the sedimentation velocity increases as a result. However,
the simulation was unable to predict a steady sedimentation rate for the particles.

In the present study, we have developed a simulation algorithm which accounts
for the finite length of the particles when calculating the interparticle hydrodynamic
interactions. The algorithm is sufficiently efficient to enable dynamic simulations and
we are able to determine a convergent, steady-state sedimentation velocity for a given
set of parameter values. The results capture the essence of published experimental
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observations, and for many of the details, the calculations agree quantitatively with
the data of Herzhaft & Guazzelli (1999).

In § 2, the numerical method for simulating the sedimentation of a suspension of
fibres is presented in detail. The results of the simulations follow in § 3 along with
a detailed comparison to existing experiments. In § 4 we present an overview of the
success of our simulations and we summarize and conclude in § 5.

2. Simulation method
To calculate the ‘far-field’ inter-particle hydrodynamic interactions, our simulation

method uses slender-body theory together with a linearization of the force distribution
along the centreline of each fibre. The linearized specification of the force density
includes a force on the centre of mass, a couple, and a stresslet on each fibre as
demonstrated below. Note that we do not assume point-singularity interactions, but
rather a linear force distribution along the fibres. The method is similar to that used
by Harlen, Sundararajakumar & Koch (1999) who simulated a sphere falling through
a neutrally buoyant suspension of rigid rods. Our particular simulation method differs
in that the suspension is made entirely of fibres which are not neutrally buoyant and
periodic boundary conditions are used to simulate an infinite suspension. Also, the
short-range hydrodynamic forces are calculated using a lubrication approximation
instead of irreversible contacts between particles as was employed by Harlen et
al. (1999). The details of the calculations for the far-field interaction are presented
in § 2.1. A discussion of the method used to include lubrication is in § 2.3 and then
the complete set of equations is given in § 2.4.

2.1. Far-field interactions

For our simulation method the linear and rotational velocities of each fibre are
described by the slender-body theory of Batchelor (1970). For a leading-order ap-
proximation in log(2A), where A is the aspect ratio, the equation relates the motion
of the fibre to the force distribution by the fibre acting on the fluid,

ẋα + sṗα − u′α =
log(2A)

4π
(I + pαpα) · fα(s), (2.1)

where xα and ẋα are the vectors specifying the position and velocity of the centre
of mass of fibre α. The unit vector pα describes the orientation of the fibre α and
ṗα is the rotational velocity. The disturbance velocity, u′α, is the sum of the imposed
velocity field and the fluid velocities caused by the particles other than α. The motion
of the slender body also depends upon the aspect ratio A (total length to diameter)
and the distribution of forces fα(s) along the length s of the fibre.

In the simulation method of Claeys & Brady (1993a), the development of the
algorithm begins with the singularity solution of Chwang & Wu (1974, 1975) for
the motion of spheroids instead of the slender-body equation as here. Since the
formulations are consistent in the limit of high aspect ratio (Kim & Karrila 1991),
no important details are lost in the calculation so long as the simulations are limited
to rigid fibres of high aspect ratio.

Integrating equation (2.1) over the length of the fibre gives an explicit relationship
for translational velocity as functions of the force and velocity along the fibre,

ẋα =
1

2

∫ 1

−1

u′α(xα + spα) ds+
log(2A)

8π
(I + pαpα) · F α. (2.2)
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Likewise, taking the cross-product of equation (2.1) with spα and then integrating over
the length of the fibre gives the corresponding expression for the rotational velocity
for fibre α,

ṗα = 3
2
(I − pαpα) ·

∫ 1

−1

su′α ds− 3 log(2A)

8π
pα ∧Tα. (2.3)

In the preceding equations, the integrated force and torque are

F α =

∫ 1

−1

fα(s) ds, (2.4)

Tα =

∫ 1

−1

spα ∧ fα(s) ds, (2.5)

and the equations have been made dimensionless with a characteristic length, time
and velocity given by

uc =
gV∆ρ

4πµl
log(2A),

lc = l,

tc = lc/uc =
4πµl2

gV∆ρ log(2A)
.


(2.6)

The volume and reduced density of a fibre is respectively V and ∆ρ. The fluid viscosity
is denoted by µ and gravitational acceleration by g. The half-length of a fibre is l.
Thus, the characteristic velocity equals the velocity of an isolated fibre falling with
an orientation parallel to gravity, while the characteristic time is the time needed for
such a fibre to sediment half of its length.

In the original analysis of Batchelor (1970), the slender-body approximation was
derived from a boundary integral equation where, under the assumption that the
error is small since the aspect ratio is high, the surface integral is computed as a line
integral along the centreline of the particle. Thus, the velocity disturbance generated
by particle β at a position x can be approximated as

uβ(x) =

∫ 1

−1

J(x− xβ − spβ) · fβ(s) ds, (2.7)

where J is the Oseen tensor,

J(x− ξ) =
1

8π

(
I

R
+

(x− ξ)(x− ξ)

R3

)
, (2.8)

and R is the distance between the evaluation point and a point force located at
position ξ.

Equation (2.7) represents the disturbance velocity created by a single fibre, but
to simulate an infinite suspension the disturbance velocity for an array of fibres
is needed. Since we will approximate an infinite suspension by imposing periodic
boundary conditions on a simulation box, the Oseen tensor must be replaced by the
fundamental solution Jp of the Stokes equations for a periodic array of point forces
as derived by Hasimoto (1959). Since an imposed or mean flow does not exist for
this particular problem, the disturbance velocity on a given fibre arises solely from
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the motion of the other fibres,

u′α(xα + sαpα) =

N∑
β=1

∫ 1

−1

K(xα + sαpα − xβ − sβpβ) · fβ(sβ) dsβ, (2.9)

where

K(xα + sαpα − xβ − sβpβ) =

{
Jp(xα + sαpα − xβ − sβpβ) if α 6= β,

Jp(sα − sβ)− J(sα − sβ) if α = β.
(2.10)

The Oseen tensor must be subtracted from the periodic fundamental solution for
the second case in equation (2.10) when α = β so that the velocity due to fibre
α is not included in the calculation of the disturbance velocity. In the event that
α = β and sα = sβ , the limiting form of the matrix Jp − J which was derived by
Hasimoto (1959) must be used. Evaluating the periodic fundamental solution is a
time-consuming calculation which involves an infinite sum. However, the burden is
substantially reduced by using Ewald sums (Hasimoto 1959).

In a manner similar to that of Mackaplow & Shaqfeh (1998), at this point we could
discretize each fibre and solve the set of equations directly for the force distribution
and velocity disturbance on each fibre. Such a solution method is computationally
expensive, however, and severely limits the time span over which the sedimenting
suspension can be simulated. Mackaplow & Shaqfeh (1998) carried out Monte Carlo
simulations with preassigned, uniform distributions of particles and did not solve for
the dynamic evolution of the suspension microstructure. A more efficient approach
is needed to overcome the computational expense while still including the effect of
multi-body interactions and preserving the effect of finite particle length, thus avoiding
the point-particle approximation of Mackaplow & Shaqfeh (1998).

2.2. Linearization of force distribution

Linearizing the force distribution for the fibres as was accomplished by Harlen et al.
(1999) makes the problem of solving for the dynamic evolution of the particle structure
feasible. Using equations (2.1), (2.2) and (2.3) to solve for the force distribution in
terms of the velocity disturbance and the total force and torque on the particle gives

fα =
2π

log(2A)

(
I − 1

2
pαpα

) · ∫ 1

−1

u′α ds+ 1
2
F α +

3s

2

[
4π

log(2A)
(I − pαpα)

×
∫ 1

−1

su′α ds+Tα ∧ pα
]
− 4π

log(2A)

(
I − 1

2
pαpα

) · u′α. (2.11)

Expanding the disturbance velocity in a series of Legendre polynomials in the fibre
coordinate s and retaining only the first two terms results in a spectral approximation
ũ′α(s) of the disturbance velocity u′α(s),

ũ′α(s) =
1

2

∫ 1

−1

u′α ds+
3s

2

∫ 1

−1

su′α ds, (2.12)

where u′α(s) is evaluated using equation (2.9). Using the approximation ũ′α(s) in place
of u′α(s) in equation (2.11) gives a linear form for the force distribution,

fα(s) = 1
2
F α + 3

2
s(Tα ∧ pα +Sαpα), (2.13)

which is the linear force distribution used by Harlen et al. (1999).
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Figure 1. The lubrication force flub between two fibres α and β. As shown, the force acts on fibre
α at s = λα and acts on fibre β at s = λβ in the opposite direction.

The net hydrodynamic force, F α, must balance the sum of the force due to gravity,
F g , as well as the forces due to lubrication, which are discussed in § 2.3. There is no
torque on a particle due to gravity, so the net hydrodynamic torque, Tα, is equal to
the sum of the torques created on fibre α by the lubrication interactions. The third
term in equation (2.13) includes the stresslet Sα for fibre α, where

Sα = − 2π

log(2A)

∫ 1

−1

spα · u′α ds. (2.14)

Since the particles possess only one finite dimension, the stresslet is a scalar quantity
which arises from the inability of a fibre to stretch or compress along its major axis.

The stresslet in equations (2.13) and (2.14) incorporates multi-body hydrodynamic
interactions into the simulation method. Equation (2.14) is used to solve directly
for the value of the stresslet Sα for every fibre α. The disturbance velocity in the
equation for the stresslet is evaluated using equation (2.9) with the force distribution
given by equation (2.13). The final result is a linear set of equations for the stresslets
which depends upon the instantaneous configuration of all the particles within the
suspension. In turn, the stresslets are used in equations (2.2) and (2.3) to calculate the
motion of the fibres. This is demonstrated in § 2.4, but first the method for including
lubrication interactions is presented.

2.3. Lubrication interactions

When the minimum separation between two particles approaches and falls below one
fibre diameter, lubrication dominates the interactions of the pair. These short-range
interactions between particles are included using lubrication approximations derived
from the formulas of Claeys & Brady (1989).

For the case of fibres α and β interacting along their length as seen in figure 1, the
approximate force acting on fibre α is

flub = − 6πḣ

A2 |pα ∧ pβ| hn, (2.15)

where n is the unit vector normal to the orientation of both fibres and is given by

n = ± pα ∧ pβ
|pα ∧ pβ| . (2.16)
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The normal points from fibre α to fibre β, so the sign is chosen accordingly. The force
on fibre β is equivalent, but acts in the opposite direction. The minimum separation
distance is

h =| (xα − xβ) · n| − 1

A
(2.17)

and ḣ is the relative velocity between the two fibres projected along their common
normal,

ḣ =
(
ẋα + λαṗα − ẋβ − λβ ṗβ) · n. (2.18)

In this equation, λα and λβ are the points on the respective fibres where the distance
between the fibres is minimum and where the lubrication force acts.

The preceding analysis is similar to that suggested by Yamane, Kaneda & Doi
(1994) and which has been used in simulations of shear flow of rigid fibres by Fan,
Phan-Thien & Zheng (1998). In their simulations, as well as in this algorithm, the
tangential components of the lubrication interactions are not included. The lubrication
force due to relative, tangential motion of the fibres scales as log(1/h), and thus is
much smaller than the normal component of the lubrication force.

Equation (2.15) is an approximation of the lubrication force between two non-
parallel cylindrical bodies of infinite length. However, if the fibres are nearly parallel,
the relationship fails since the parallel limit is singular for infinitely long fibres. Of
course, in fact the fibres have a finite length, even if large with respect to the diameter.
To account for the finite length in the event of a short-range interaction between
parallel particles, the lubrication equations of Claeys & Brady (1989) are implemented
using a dimensional radius of curvature equal to the particle length. The resulting
lubrication force is given by

flub = − 12πḣ

(2A+ 1)
[(
A2 + 1/4

) |pα ∧ pβ|2 +A
(

1 +
(
pα · pβ

)2
)]1/2

h

n. (2.19)

The preceding equation is well defined for parallel rods and reduces to the previous
expression of equation (2.15) for a large aspect ratio and alignment which is not
parallel. When two fibres are parallel or nearly parallel (| pα · pβ |6 0.999), equation
(2.19) is used within the numerical algorithm to calculate the lubrication force instead
of equation (2.15).

For the far-field hydrodynamic interactions, the details of the end interactions
between fibres have no effect. However, when calculating the lubrication interactions,
those details must be included. These additional types of interactions are handled in
the same manner as above using the lubrication analysis of Claeys & Brady (1989)
with the ends of the particles modelled as spherical caps. For an end-cap interacting
with a cylindrical body, the lubrication force is given by

flub = − 4πḣ√
2A2h

n. (2.20)

For an end-cap interacting with another end-cap, the lubrication is approximated by
the formula for a sphere interacting with another sphere,

flub = − 3πḣ

2A2h
n. (2.21)
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In the previous two equations, the normal vector is given by a relationship different
from that described by equation (2.16) and the minimum separation distance h must
also be calculated using the appropriate relationship.

In the simulation algorithm, lubrication interactions are assumed negligible for
pairs of fibres with a minimum separation distance greater than one fibre diameter.
To calculate the lubrication forces, the number and type of interactions must first
be identified. For every fibre pair meeting the requirement h 6 2/A, the lubrication
force must be determined using the lubrication equation corresponding to the relative
geometries of the two fibres. Since the lubrication forces and stresslet given by
equation (2.14) depend on one another, the solution must be made simultaneously.
Thus, the solution requires solving a set of linear equations with an equation for each
stresslet and an additional equation for each lubrication force.

As is commonly practised with Stokesian dynamics (Durlofsky & Brady 1989),
each lubrication interaction is supplemented with a small, repulsive force which acts
at the same points and in the same direction as the lubrication force. The purpose of
including this force is to keep the minimum separation distance between the particles
from becoming, or remaining, artificially small due to small errors in the integration
with respect to time. The form of the repulsive force is

fr = ao
τe−τh

1− e−τh
n, (2.22)

which is the same expression as used by Durlofsky & Brady (1989). The parameters
ao and τ are selected so that the force is small over most of the range of the
lubrication force. For most of the simulations, the dimensionless values of ao and τ
were respectively set equal to 1 × 10−4 and 1 × 103. The dimensional form of ao is
given by multiplying by µl2c uc and the dimensional value for τ is given by dividing by
the characteristic length, l. The values of both ao and τ were also varied to confirm
that they had little impact upon the simulation results.

In their simulation of a sphere falling through a viscous suspension of rigid rods,
Harlen et al. (1999) ignored lubrication and the excluded volume of the rods and
allowed the centrelines of the fibres to contact, but not pass through, each other.
Unfortunately, rigorous solution of the contact forces for particles with multiple
contacts is a nonlinear problem. Harlen et al. (1999) overcame this problem by
implementing some simplifying rules to define the particle contacts. In the present
case, however, large rafts of interconnected, contacting fibres form and the rules
suggested by Harlen et al. (1999) to define contacts fail.

Not allowing contact interactions saves computational time because the expensive
search for collisions and the resulting iteration process for the particle velocities
is avoided. However, small time steps become necessary to avoid the possibility of
violating the excluded volume of the particles. As the aspect ratio increases, the
problem of resolving lubrication interactions becomes more time consuming, scaling
roughly with the aspect ratio.

2.4. Complete equations

Once the stresslets are computed along with any lubrication forces, the motion of
each fibre can be determined by using equations (2.2) and (2.3). The disturbance
velocity is evaluated using equation (2.9) and the force distribution is given by (2.13).
Combining all of these equations results in the following two equations for the linear
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and rotational velocities of the fibres:

ẋα =

N∑
β=1

(Kαβ +SβPαβ

)
+

M∑
l=1

Mαl · gl +
ln(2A)

8π
(I + pαpα) ·

(
F g +

M∑
k=1

Aαkgk

)
,

(2.23)

ṗα =

N∑
β=1

(Lαβ +SβQαβ)+

M∑
l=1

Nαl · gl +
3 ln(2A)

8π
(I − pαpα) ·

M∑
k=1

Bαkgk. (2.24)

The gravitational force, Fg , has a direct effect on the sedimentation of a fibre as
seen in equation (2.23), but does not have a direct effect on the rotational velocity.
However, the sedimentation of each fibre causes a disturbance which can induce a
rotation as well as a displacement of another fibre. The linear velocity of fibre α due
to the gravitational force on fibre β is given by

Kαβ =
1

4

∫∫ 1

−1

K · F g dsβ dsα, (2.25)

and the rotational velocity of α due to gravity acting on fibre β is given by

Lαβ = 3
4
(I − pαpα) ·

∫∫ 1

−1

K · F g dsβsα dsα. (2.26)

In these equations, the matrix K (defined in equation (2.10)) is a function of the
relative spatial arrangement of the fibres α and β as well as the positions sα and sβ
on the length of the fibres.

The gravitational and lubrication forces acting on each fibre also influence the
motion of the other fibres in the suspension through the stresslet. The sub-matrix P
relates the stresslet on fibre β to the linear motion of fibre α, where each component
takes the form

Pαβ =
3

4

∫∫ 1

−1

K · pβsβ dsβ dsα. (2.27)

Likewise, the stresslet can cause a rotation as described by the relationship

Qαβ = 9
4
(I − pαpα) ·

∫∫ 1

−1

K · pβsβ dsβsα dsα. (2.28)

The remaining terms in equations (2.23) and (2.24) arise from the lubrication forces
which are denoted as gi, where the subscript identifies the particular interaction.
The total number of interactions, M, depends upon the relative arrangement of the
particles. Each interaction i is associated with a pair of particles which are labelled a
and b; the force gi is defined as positive on particle a and negative on b. The position
on the fibre length at which interaction i acts upon fibre a is denoted λia. To calculate
the direct contribution to the velocities, the lubrication interactions are multiplied by
the matrices

Aαk = δαa − δαb, (2.29)

Bαk = δαaλka − δαbλkb, (2.30)

where δαa equals zero unless α = a, in which case it equals one. The indirect effect of
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a lubrication force on fibre α appears in equations (2.23) and (2.24) as

Mαl =
1

4

∫∫ 1

−1

K · (I + 3λkasa(I − papa)) dsa dsα

−1

4

∫∫ 1

−1

K · (I + 3λkbsb(I − pbpb)) dsb dsα, (2.31)

Nαl = 3
4
(I − pαpα) ·

(∫∫ 1

−1

K · (I + 3λkasa(I − papa)) dsasα dsα

−
∫∫ 1

−1

K · (I + 3λkbsb(I − pbpb)) dsbsα dsα

)
. (2.32)

To numerically compute the integrals in the above equations, Gaussian quadrature
is used to integrate over each length. For fibres separated by less than one fibre length,
ten quadrature points were used for each integral, otherwise five points was sufficient
to calculate the convergent values of the integrals.

After calculating the linear and rotational velocities using the relationships given
in equation (2.23) and equation (2.24), a fourth-order Runge–Kutta method advances
the particle positions and orientations in time. The time step is determined using an
adaptive method. All pairs of particles which have a separation distance small enough
to be affected by lubrication are analysed to determine if the separation distance is
increasing or decreasing. For those pairs that are approaching each other, an estimate
of the time to contact is calculated based upon the instantaneous geometry and
relative velocity. The time step is then set equal to either 1/2 or 3/4 of the smallest
estimated time to contact. In the rare event that there are no pairs of particles which
are within lubrication range and which are approaching one another, the time step is
selected so that no particle moves more than 1/2 of the diameter of the fibres.

Despite the precautions built into the adaptive method used to determine the time
step, a collision or overlap of a pair of fibres does occasionally occur. In that event,
the position and orientation of the rods are returned to the configuration which
existed before the current time step began. The move is then tried again using a
smaller time step equal to either 1/2 or 3/4 of the time step which was last attempted
and failed.

The strict adherence to maintenance of the excluded volume of the fibres generally
requires very small time steps since at least one pair of particles is often close to
contact. After advancing the configuration of the fibres over the short time step, the
lubrication forces may change significantly, but the long-range interactions essentially
remain unaltered since the microstructure of the suspension changes very little.
Therefore, the simulation method updates the lubrication interactions for each new
position, but the long-range hydrodynamic interactions are updated less frequently.
This use of this approximation greatly improves the run-time performance of the
program with little or no impact upon the computational results.

Lubrication interactions were not included in some of the simulations in order
to quantify the effect of short-range interactions. To advance the positions and
orientations for these simulations, the Euler method was used instead of the Runge–
Kutta algorithm and the necessity of maintaining the excluded volume was ignored.
When using the Euler method, the dimensionless time step was chosen so that the
particle possessing the maximum velocity would move no further than one tenth of
its total length. Halving the time step in an example calculation demonstrated that
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this criterion was sufficiently rigorous to give a convergent result for the average
sedimentation velocity of the suspension of fibres as a function of time. Also, for
these simulations, the hydrodynamic interactions were fully calculated at every step.
We present results from calculations with and without lubrication interactions, as
well as other results, in the next section.

3. Results
Using the numerical method described in the previous section, simulations were

made for a range of parameters. Many of the simulation results are compared to
experimental measurements. We first present results on the particle structure in § 3.1.
The convergence of the average sedimentation velocity with particle number N is
investigated next in § 3.2, and then the effect of the relative dimensions of the periodic
simulation cell is studied in § 3.3. Information on the probability distribution of the
fibre orientations as well as the dynamics of the particle orientations appears in § 3.4.
Plots of the velocity distribution follow in § 3.5. Finally, in § 3.6 the effect of increasing
the bulk number density on the average sedimentation velocity, velocity fluctuations,
and orientation parameter are given for fibre aspect ratios of 11 and 32.

3.1. Particle distribution

Direct visualization of the suspension demonstrates that the simulation predicts the
formation of clusters of particles. Snapshots of the suspension structure appear in
figure 2 for a bulk number density of 0.154, an aspect ratio A = 11, and a height
to width ratio of dz/dw = 2 for the periodic cell. For this simulation, and all of
the simulations presented in this paper, the periodic cell has a square cross-section
in the horizontal plane where dw is the dimensionless width of the cell in the x-
and y-directions as designated by dx and dy . The length of the periodic cell in the
gravitational direction, dz , is not generally equal to dw . The number of particles per
cell for the simulation shown in figure 2 equals 128 and lubrication was not included
in this particular calculation.

Initially, at t = 0, the particles in the suspension are uniformly distributed in
space and in orientation. By t = 40, the particles have preferentially aligned in the
gravitational direction and a noticeable lack of uniformity in the spatial distribution
already exists. The same trend is evident in the data for t = 80, and at t = 120 the
inhomogeneity in particle distribution has become even more apparent. The clustering
of particles is most pronounced in the directions perpendicular to gravity and the
cluster is elongated in the direction of gravity.

Though the region of high particle concentration, or cluster, moves through the
periodic cell continuously and smoothly during the simulation, the cluster is not
composed of a fixed subset of the particles in the suspension. Rather, once the
average structure has attained a steady configuration at t = 120, individual particles
continue to enter and exit the cluster.

For the data shown in figure 2 at t = 120, a vertical average of the particle centre of
mass as a function of horizontal position was made. The result, shown in figure 3(a),
demonstrates that the particle concentration at the peak value is roughly ten times
that of the bulk suspension. We found throughout all of our simulations that the
maximum in particle concentration can appear anywhere within the simulation cell,
and that once formed, the cluster generally resides at the same horizontal position
for the remainder of the simulation.

By summing the disturbance in velocity caused by all the particles in the suspension,
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(a) (b)

(c) (d )

Figure 2. Plots of the suspension at (a) t = 0, (b) t = 40.0, (c) t = 80.0, and (d ) t = 120.0. The
simulation is for 128 particles with an average number density nl3 = 0.154 and a fibre aspect ratio
of A = 11. Gravity acts in the downward direction, lubrication was not included in this simulation,
and the periodic cell has a height to width ratio of dz/dw = 2.

the fluid velocity at all positions within the periodic cell can be calculated. This
was done for the data of figure 2 at t = 120 and then the vertical component
of the velocity was averaged over the height of the cell to produce figure 3(b).
(Velocities in the direction of gravity are defined as positive.) The position of highest
velocity corresponds to the position of the cluster of particles. The fluid and particle
velocities integrated over any plane of the cell must be zero to satisfy conservation
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Figure 3. Vertically averaged number density (a) and fluid velocity (b) at t = 120.0 as a function of
horizontal position for the case of 128 particles, no lubrication, nl3 = 0.154, A = 11, and periodic
cell ratio of dz/dw = 2.
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Figure 4. Comparison of the pair distribution function for the horizontal and vertical directions
from simulations including and excluding lubrication. Computed for A = 11, nl3 = 0.154, N = 128,
and dz/dw = 2.

of volume; thus in regions where there are few particles the vertical fluid velocity is
negative.

The pair distribution function provides a quantitative measure of the structure of
the suspension. The pair probability at a specified distance is defined as the fraction
of pairs of particles in the suspension having a centre-to-centre separation at that
distance. The pair probabilities have been normalized to give the pair distribution
function before being graphed in figure 4. The pair distributions have been split into
horizontal and vertical components to clearly show that the cluster of particles is
elongated in the direction of gravity. Note that only one cluster exists within the
periodic box. Also, a comparison is made in figure 4 between simulations which in-
cluded lubrication interactions and those that did not. For these conditions, excluding
lubrication does not alter the spatial distribution of particles.

3.2. Suspension sedimentation velocity

Lubrication also has little influence on the average sedimentation velocity for the
sedimentation of particles at an aspect ratio of A = 11 and number density of
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Figure 5. Average sedimentation rate as a function of time for varying number of particles within
a simulation cell. Computed for A = 11, nl3 = 0.154, dz/dw = 2.

nl3 = 0.154. This is demonstrated in figure 5 which shows results for the sedimentation
velocity from simulations with and without short-range interactions for N = 64 and
128. A comparison was not made for N = 256 particles for these conditions because
the calculation with lubrication is very time consuming.

Figure 5 reveals that the steady sedimentation velocity varies as the number of
particles in the simulation increases from N = 32 up to N = 256 at a fixed box
ratio of dz/dw = 2. There is a linear increase in the sedimentation velocity with
number of particles for simulations of 64 up to at least 256 particles. The increase
in sedimentation velocity between N = 32 and 64 does not follow the same linear
relationship; the increase is larger. In addition, the time to steady state also depends
on the number of particles per periodic cell. For 32 particles, the suspension reaches
steady state in a dimensionless time of approximately 75; for 256 particles, the
sedimentation rate of the suspension does not equilibrate until t > 200.

For the calculations shown in figure 5, the height to width ratio of the periodic
box was maintained at a constant value of dz/dw = 2. In order to double the
number of particles, all dimensions of the cell were increased by a factor of 21/3.
As demonstrated next, the relative dimensions of the periodic cell also influence the
average sedimentation velocity. By choosing a larger value of dz/dw , a sedimentation
rate which converges with respect to the number of simulated particles can be
calculated.

3.3. Effect of periodic cell dimensions

Stretching the simulation cell in the direction of gravity rather than increasing all
dimensions proportionately gives a different behaviour for the average sedimentation
velocity as a function of the number of simulated particles. The results in figure 6
demonstrate that the sedimentation velocity converges with particle number as long
as only the height of the periodic box is increased, as opposed to the strategy of
increasing all dimensions while keeping the box ratio constant as was done for the
data of figure 5. For the simulations of figure 6, the horizontal dimensions of the
periodic cell were held constant and the ratio of height to width was set equal to N/16.
The simulations are for particles of aspect ratio 11 with no lubrication interactions
and a suspension number density of nl3 = 0.154. For N = 128 and N = 256, the
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Figure 6. Sedimentation rate as a function of time for varying number of particles. The cell height
is a function of the number of particles. Computed without using the lubrication approximations
and with the parameters A = 11, nl3 = 0.154, and dz/dw = N/16.
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Figure 7. Time-averaged pair distribution functions for simulations with a periodic cell ratio of 8
to 1, A = 11, nl3 = 0.154, and N = 128.

steady sedimentation rate is nearly identical. The simulation with 256 particles was
stopped at t = 150 rather than t = 240 because of the large computational expense.

Due to the change in relative dimensions, there is now a small difference in the
calculated sedimentation velocity which arises from including lubrication. Without
lubrication the simulation gives a steady and convergent average sedimentation
velocity of 1.03. With the lubrication interactions included, the value increases to
1.16. For number densities of 0.09 and 0.19, Herzhaft & Guazzelli (1999) measured
sedimentation velocities of 1.08 ± 0.22 and 0.86 ± 0.14 respectively. (Note that the
experimentally measured rates of sedimentation reported by Herzhaft & Guazzelli
(1999) have been adjusted to account for the different non-dimensional velocity used
in this paper.)

The difference in sedimentation rate which depends upon whether the simulation
includes lubrication interactions arises from a corresponding difference in the structure
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of the suspension. For the simulations including lubrication, the structure in the pair
probabilities appears more pronounced in that the maximum in the pair probabilities
is larger. As seen in figure 7, both the horizontal and vertical pair distribution
functions are larger at small distances than the pair distribution functions for the
simulations which did not include lubrication.

Notice that there are also differences in the pair probabilities of figure 7 compared
to the previous results in figure 4 for the periodic box with dimensions dz/dw = 2.
In simulations with the smaller cell ratio, the maximum in the pair distribution
function for the horizontal direction was much greater than the maximum in the
vertical direction. For the simulation cell with high aspect ratio, the maxima for the
horizontal and vertical directions are of comparable value. The cluster of particles is
still elongated in the gravitational direction, but is much more symmetric and has a
clearly defined boundary in both the horizontal and vertical directions.

3.4. Orientation distributions and dynamics

Figure 8 shows the numerically calculated orientation distributions for a number
density of nl3 = 0.05 and fibre aspect ratio of A = 11 from simulations with periodic
box ratios of dz/dw = 2 and 8. These results are from computations with N = 128
particles where the lubrication approximations were used. The orientation distribution
from the experiments of Herzhaft & Guazzelli (1999) are also shown in figure 8 for
the same number density and aspect ratio. The plots show the probability distribution
of the fibres as a function of the projected angle, where the angle is measured with
respect to the horizontal position. For the simulations, the orientation distribution
depends upon the relative dimensions of the simulation cell. For a height to width
ratio of 2, the simulations give a distribution of orientation which has a higher
probability of alignment with the gravitational direction than for the simulations with
dz/dw = 8.

Both the simulation results and the experimental observations indicate that the
particles have a most probable orientation which is close to vertical. However, the
simulations do not predict as large a probability for the particles to align with gravity
as seen in the experiments. The experimental result indicates that the orientation
distribution has two peaks: in addition to the maximum for orientations nearly in
alignment with gravity, there is a slightly higher probability that a particle will align
perpendicular to gravity rather than at an angle of π/4. The orientation distributions
calculated from the simulation results indicate that the probability is roughly uniform
from the horizontal orientation up to an angle of π/4, at which point the probability
begins to increase.

The average change in alignment as a function of time is quantified in figure 9
for a suspension of fibres with an aspect ratio of A = 11 and bulk number density
of nl3 = 0.154. These simulations included lubrication. For each of the N = 128
fibres, the component of the orientation vector, p, in the gravitational direction, p3,
is squared. Then an average over all the fibres is made and plotted versus time. The
time for the orientation to reach a steady state is approximately the same, regardless
of whether the value of the periodic cell ratio is 2 or 8. Once the fibre orientation
reaches a steady state, the simulation with dz/dw = 2 clearly predicts a higher degree
of average alignment in the direction of gravity than the simulation with a periodic
cell ratio of dz/dw = 8.

After the average orientation for the fibres in the suspension reaches a steady
state, the individual particles continue to change orientation. To quantify the dynamic
changes in the orientation after attainment of steady state, autocorrelations for the
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Figure 8. Comparison of orientation distributions for A = 11 and nl3 = 0.05 from simulations
and experiments of Herzhaft & Guazzelli (1999). Simulation results shown for calculations with
lubrication and 128 particles for periodic box ratios of dz/dw = 2 (a) and dz/dw = 8 (b). Experimental
measurements are displayed in (c).
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Figure 10. Autocorrelation function for the orientation. Simulations for N = 128, A = 11, and
nl3 = 0.154 with lubrication and two different ratios of height to width for the periodic cell.

orientations were calculated from the simulation data. Plots of both the vertical com-
ponent of the autocorrelation, 〈p3(t)p3(t+ τ)〉, and one of the horizontal components
of the autocorrelation function, 〈p1(t)p1(t+ τ)〉, are shown in figure 10 for values of t
greater than the time to steady state. The vertical component of the orientation cor-
relation decays rapidly for the simulation with a periodic box ratio of dz/dw = 2: the
orientation becomes uncorrelated in a time of approximately t = 15. For dz/dw = 8,
the component of the fibre orientation in the gravitational direction initially decays
rapidly as does the simulation for dz/dw = 2, but for the case of dz/dw = 8 the
decay slows before the orientation becomes uncorrelated at an approximate time of
t = 60. The autocorrelation function for the horizontal component of the orientation
decreases slowly at short and long times until becoming equal to zero at approxi-
mately t = 60 for both ratios of height to width for the periodic cell. Though the time
at which the horizontal rotations decorrelate is approximately the same in the two
simulation cells, the distance that a fibre must fall differs. For dz/dw = 8, the rotations
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of the fibres become uncorrelated after an average fibre falls a distance of 35 fibre
lengths at the average sedimentation rate of 1.16. In the simulation with dz/dw = 2,
the average sedimentation velocity is over three times higher. Consequently, an aver-
age particle must fall a distance of 106 fibre lengths before the orientations become
uncorrelated.

3.5. Velocity distributions

Figure 11 shows the velocity distribution of the fibres in suspension calculated for a
number density of nl3 = 0.05, fibre aspect ratio of 11, and N = 128. Results for the
simulations with lubrication interactions and periodic box ratios of dz/dw = 8 and
2 are both included in the figure. The velocity distribution measured in experiments
for the same number density and fibre aspect ratio is presented in figure 11(c).
As expected, the horizontal velocities of the particles are distributed evenly about a
velocity of zero for both the simulations and the experiments. The standard deviation,
or velocity fluctuation of the fibres, for the horizontal direction is 0.20 ± 0.05 for
the experiments and 0.16 for the simulations with dz/dw = 8. For dz/dw = 2, the
horizontal fluctuations equal 0.22, which is larger than the value for the simulation
with dz/dw = 8 and the experiment.

For the vertical velocities, the simulated distributions have significant differences
which arise from the change in relative dimensions of the simulation cell. The fact that
the sedimentation rate is larger for dz/dw = 2 has already been noted, but these plots
also indicate that the distributions for vertical velocity for the two different box sizes
are also very different. The fluctuations, or standard deviation, in the vertical velocity
equal 0.6 for dz/dw = 8 and 1.7 when dz/dw = 2. A fibre can have a sedimentation
velocity as high as 7.0 when the cell ratio equals 2. The maximum sedimentation
rate for a fibre in the simulations with dz/dw = 8 is much closer to that observed in
the experiments. The other aspects of the simulated distribution for dz/dw = 8 are
also in closer agreement with the experimentally measured distribution. The average
sedimentation velocity of the particles for the experiments is 0.79 ± 0.14, while the
simulation predicts an average sedimentation velocity of 1.16. For dz/dw = 8, the
velocity fluctuations of the fibres for the vertical direction are within one standard
deviation of the velocity fluctuations observed in the experiments. The experimental
measurement is 0.72 ± 0.14; the simulation gives a vertical velocity fluctuation of
σv = 0.60. The experimental velocity distribution is nearly symmetric, whereas the
simulation result with dz/dw = 8 predicts a slightly less symmetric distribution. The
simulation accurately shows a long tail towards the higher velocities, but very few
particles have a negative velocity.

The numerical data cited in the previous paragraph indicate that the shape of the
periodic cell affects the fluctuations in velocity for the sedimenting fibres. Likewise,
the box size also affects the calculated values of the velocity fluctuations. Figure 12
shows both the horizontal and vertical velocity fluctuations for nl3 = 0.154, A = 11,
and dz/dw = 2 as a function of number of simulated particles N, or the size of the
periodic box. Notice that both the horizontal and vertical fluctuations increase linearly
with N, though the horizontal fluctuations in velocity grow at a slower rate than the
velocity fluctuations in the vertical direction. This phenomenon, unlike the problem
with sedimentation velocity as seen in figure 5, is not unique to the sedimentation of
rigid rods. Simulations of sedimenting suspensions of spherical particles using periodic
boundary conditions exhibit very similar behaviour for the velocity fluctuations as
a function of box size, as is explained in the work of Caflisch & Luke (1985) and
Ladd (1997). The simulations of sedimenting suspensions of spheres indicate that the
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Figure 11. Comparison of velocity distributions for A = 11 and nl3 = 0.05 from simulations
and experiments of Herzhaft & Guazzelli (1999). Simulation results shown for calculations with
lubrication and 128 particles for periodic box ratios of dz/dw = 2 (a) and dz/dw = 8 (b). Experimental
measurements are displayed in (c).
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Figure 12. Horizontal and vertical velocity fluctuations as a function of the number of particles
simulated. Simulation results shown for calculations without lubrication included and with A = 11,
nl3 = 0.154, and dz/dw = 2.

velocity fluctuations continue to diverge as N increases when using periodic boundary
conditions.

3.6. Concentration and aspect ratio dependence

Up to this point, the simulations have been restricted to sedimenting suspensions of
fibres with an aspect ratio of A = 11 and to only two values for the bulk number
density. We now expand our investigation to include a fibre aspect ratio of 32 and a
wider range of number densities.

Figure 13 displays average sedimentation rates for the suspension as a function
of the concentration. The data shown in (a) are for an aspect ratio of 11, while the
data in (b) are for an aspect ratio of 32. All the average sedimentation rates are
from calculations with lubrication included and using N = 128 particles within a
periodic box with a height to width ratio of dz/dw = 8. The data from experiments of
Herzhaft & Guazzelli (1999) for the same fibre aspect ratios are also plotted, along
with the estimates of error as reported by the authors. The simulated data have not
been presented with error bars included. For most of the simulations, only a limited
number of calculations were made owing to the computational expense. However, for
A = 11 and nl3 = 0.019 and 0.05, multiple runs were made and can be reported. For
nl3 = 0.019, the sedimentation velocity is 0.95± 0.08, and for nl3 = 0.05, 〈uz〉ss equals
1.16± 0.09. In both cases, the standard deviation is less than 10% of the mean value.
Furthermore, the standard deviation of the mean value of the sedimentation rate is
less than the fluctuation of the mean value for any one run. This indicates that the
mean value, as calculated here with N = 128, is relatively insensitive to the initial
configuration of the particles within the periodic cell.

For A = 11 and at low number densities, the average sedimentation velocities
from the simulations agree closely with those measured in experiments as seen in
figure 13(a). The sedimentation rate also exhibits a maximum between nl3 = 0.05 and
nl3 = 0.154, which is observed in the experiments. The sedimentation rate predicted by
the simulations is slightly higher than the experiments for A = 32. The velocities show
the correct qualitative behaviour for values of nl3 < 1, in that the velocity remains
approximately constant. The simulations show a significant drop in the velocity at
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Figure 13. Average sedimentation rates at steady state as a function of number density nl3. Results
were calculated, with lubrication included, for dz/dw = 8 and N = 128 fibres with aspect ratios of
A = 11 (a) and A = 32 (b). Simulation results are compared to the experimental measurements of
Herzhaft & Guazzelli (1999).

nl3 = 1.305; the sedimentation rate at this concentration is close in value to the rates
measured in experiments at number densities of 0.8 and 1.6.

Figure 14 presents velocity fluctuations, or standard deviations in the velocities
of the particles, corresponding to the average sedimentation rates of figure 13. At
low number densities and for fibre aspect ratios of A = 11 and A = 32, both the
horizontal and vertical velocity fluctuations agree quantitatively with those observed
in experiments. However, the simulations predict that the fluctuations change very
little as the average number density increases, whereas the experimentally measured
fluctuations increase by a factor of up to two as the number density increases. The
calculated ratios of the vertical to horizontal fluctuations in the particle velocities
remain nearly constant at an approximate value of 3 over the entire range of number
densities; this constant ratio of 3 agrees with the ratio reported by Herzhaft &
Guazzelli (1999).

The simulation data graphed in figure 14 come from calculations with dz/dw = 8.
For simulations with dz/dw = 2 the velocity fluctuations are larger. For a number



228 J. E. Butler and E. S. G. Shaqfeh

nl3

(a)

0 0.3

0.2

0.6 0.9 1.2 1.5 1.8

0.4

0.6

0.8

A = 11, Herzshaft & Guazzelli (1999)
A = 11, simulation results
A = 32, Herzshaft & Guazzelli (1999)
A = 32, simulation results

H
or

iz
on

ta
l v

el
oc

it
y 

fl
uc

tu
at

io
ns

(b)

0

0.4

0.8

V
er

ti
ca

l v
el

oc
it

y 
fl

uc
tu

at
io

ns

0.3 0.6 0.9 1.2 1.5 1.8

1.2

1.6

2.0

Figure 14. Velocity fluctuations as a function of number density. Results were calculated, with
lubrication included, for dz/dw = 8 and N = 128 fibres with aspect ratios of A = 11 and A = 32.
Horizontal components and vertical components are shown in (a) and (b), respectively.

density of nl3 = 0.154, the horizontal fluctuation in the particle velocity equals 0.236
and 0.174 while the vertical fluctuation equals 1.74 and 0.617 for dz/dw = 2 and
dz/dw = 8 respectively. At a lower number density of nl3 = 0.05, the horizontal
fluctuation for dz/dw = 2 is 1.4 times larger than the horizontal fluctuation when
dz/dw = 8 and the vertical fluctuation is 2.8 times larger.

Figure 15 shows the orientation parameter as a function of nl3 for aspect ratios
of 11 and 32. These values are also from the calculations made with lubrication and
using N = 128 particles within a periodic box with a height to width ratio of 8.
The orientation parameter is an average measure of the orientation of the particles
given by 〈2 cos2(φ) − 1〉, where φ is the projected angle measured with respect to
the horizontal direction and the brackets indicate an ensemble average over all the
particles in the suspension. A value of 1 would indicate that all particles are aligned
perpendicular to gravity while a value of −1 would indicate perfect alignment of all
the fibres with gravity. The orientation parameter equals zero for a suspension of
fibres with a randomized orientation.

The estimates of error for the experimentally measured orientation parameters are
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Figure 15. Orientation parameters at steady state as a function of number density nl3. Results were
calculated, with lubrication included, for dz/dw = 8 and N = 128 fibres with aspect ratios of A = 11
(a) and A = 32 (b). Simulation results are compared to the experimental measurements of Herzhaft
& Guazzelli (1999).

not shown on the graphs in figure 15 since they are small in comparison to the size
of the point; Herzhaft & Guazzelli (1999) report errors which are no larger than
1.5% of the value of the orientation parameter. As with the sedimentation velocity,
the error in the orientation parameter was estimated for the cases of the lowest two
number densities at an aspect ratio of A = 11. For nl3 = 0.019, the orientation value
was found to have an average value of −0.14 and a standard deviation of 0.01. For
the case of nl3 = 0.05, the orientation parameter equals −0.26± 0.02.

Both the simulations and experiments indicate that particles tend to align with
gravity. However, figure 15 demonstrates that the simulations consistently predict a
smaller degree of alignment than the experiments when dz/dw = 8. This fact can also
be observed in the comparison of orientation distributions between the simulations
and experiments for nl3 = 0.05 and A = 11 as seen in figure 8. For simulations
using a periodic cell ratio of dz/dw = 2, the orientation parameter is more negative,
and thus agrees with the experiments better. At nl3 = 0.05 and nl3 = 0.154, the
orientation parameter calculated by simulations with dz/dw = 2 equals −0.44 and
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−0.49. At nl3 = 0.05, the experimentally measured value equals −0.41. At number
densities of nl3 = 0.09 and 0.19, the measured values are −0.43 and −0.53. Despite
the fact that the orientation parameters are in better agreement, there are still some
important differences in the distribution of orientation for dz/dw = 2 as seen in figure
8. Some possible origins of the discrepancy in the orientation parameter between the
simulations with dz/dw = 8 and the experimental observations are discussed in the
following section along with a discussion of the other results.

4. Discussion
The simulation results from the preceding section represent a significant improve-

ment over earlier attempts to numerically calculate the sedimentation of rigid fibres
in suspension in the limit of zero Reynolds number. In addition, these results confirm
the essence of existing theory and experiments. We discuss each of these assertions in
turn.

4.1. Steady and convergent sedimentation velocities

Compared to previous simulations, perhaps the most striking achievement of this
method is its ability to calculate a steady sedimentation velocity. The dynamic
simulations of Mackaplow & Shaqfeh (1998) did not allow for calculation of a steady-
state sedimentation velocity. Rather, the point particles used in those simulations
formed a cluster which became increasingly dense as time progressed, and the fibres
in the suspension never attained a steady, average structure. Thus the sedimentation
velocity increased indefinitely.

The current simulation method demonstrates that a finite, steady sedimentation rate
can be calculated by distributing the effects of hydrodynamic interactions along the
entire length of the fibre as opposed to concentrating them at a point. Furthermore,
calculating a steady sedimentation velocity does not depend on including lubrication
interactions within the algorithm. Indeed, many of the simulation results indicate that
lubrication interactions have a marginal impact on the solution for small number
densities, though the short-range interactions become increasingly important as the
number density exceeds nl3 = 0.2.

The simulation successfully predicts a steady sedimentation velocity, but we have
also found that calculating a convergent velocity requires selecting the proper ratio
of height to width for the dimensions of the periodic cell. As seen in figure 6, the
velocity converges as the number of particles increases if the periodic cell height is
increased in a direct one-to-one proportion with the number of particles.

When all dimensions are increased as the number of particles increases, the sed-
imentation rate grows linearly as a function of the number of particles (see figure
5). The particle cluster in these simulations is highly concentrated in the horizontal
directions, but is relatively uniform in the vertical direction. This column of particles,
which spans the height of the periodic cell, convects downward with resistance pro-
vided primarily by the fluid shear at the boundary between the highly concentrated
region and the clarified fluid. This structure and related sedimentation velocity clearly
do not represent the observations made in experiments.

Increasing the length of the periodic cell in the direction of gravity changes the
structure of the suspension. Figure 7 shows that the maximum in the pair distribution
function in the vertical direction is comparable to that in the horizontal direction;
the cluster is slightly elongated in the gravity direction, but is otherwise symmetric.
The leading edge of the concentrated region of particles must overcome the strong
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resistance associated with falling through a volume of clarified fluid, much like an
isolated cluster of particles in an infinite fluid would. As highlighted next in our
discussion, these simulations accurately reproduce the major features observed in
experiments for the sedimentation velocity as a function of number density and
aspect ratio.

4.2. Comparison of velocity data with experiments

The formation of particle clusters during the sedimentation of the suspension of rigid
fibres causes an enhanced sedimentation rate at low number densities. For the range
of number densities and aspect ratios studied, the sedimentation velocity at steady
state is higher than expected for a spatially homogeneous suspension with the same
orientation distribution. For some conditions, the suspension of particles sediments
more rapidly than a single, isolated fibre aligned with gravity.

The comparisons with experiments shown in figure 13 for A = 11 and A =
32 demonstrate that the simulation is predicting accurate results for the particle
sedimentation rates. For A = 11, the simulation and experimental results agree
quantitatively at low number densities. For A = 32 and low number densities, the
calculated rates are slightly higher than the rates observed in experiments. However,
for the lower number densities, the simulations are in qualitative agreement with the
experiments. Also, the calculated sedimentation rate at a number density of nl3 = 1.3
is within one standard deviation of the sedimentation velocities measured at the two
closest values of the number density of the suspension.

The comparisons of the calculated sedimentation velocities with the experiments
may be better than they appear. The error bars in figure 13 show the standard
deviation in the measurement of the average sedimentation velocity. However, there
are additional errors present in the experiments that have an impact on the measured
sedimentation rate which are not reflected in the experimental errors shown in figure
13. For example, Herzhaft & Guazzelli (1999) report significant errors for parameters
such as the bulk number density and the fibre aspect ratio.

The experimental results show that the sedimentation rate of the fibres increases and
then decreases as the average value of the number density increases. This maximum
is particularly apparent in the data for fibres of aspect ratio 11, but also exists for
the fibres of aspect ratio 32. The simulations accurately predict the maximum in
sedimentation velocity and demonstrate that this maximum is caused by changes
in the structure and orientation distribution of the suspension as the bulk number
density changes. Figure 16 shows the horizontal component of the pair distribution
function for the lowest and highest number densities which were simulated for a fibre
aspect ratio of A = 11. These two distributions are nearly identical and figure 13
indicates that the sedimentation velocities are approximately the same. For randomly
oriented suspension of rods which have the same pair distribution, the suspension of
higher concentration at nl3 = 0.578 should have a lower sedimentation rate than the
suspension at nl3 = 0.019 due to the increased hindrance of sedimentation at higher
volume fractions which arises from the fluid back-flow. However, orientation plays a
role in determining the sedimentation rate of the suspensions, and figure 15 shows
that the particles are more aligned with the gravitational direction for the case of
nl3 = 0.578. This higher alignment allows the suspension to sediment as fast as the
suspension of lower number density which has a similar pair distribution function.

Figure 16 also shows the horizontal component of the pair distribution function for
nl3 = 0.154, which is close to the average number density at which the sedimentation
rate attains its maximum value. At this number density, the pair distribution function
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Figure 16. Comparison of the pair distribution function in the horizontal direction for three
average number densities. Calculations with lubrication for A = 11, N = 128, and dz/dw = 8.

has a higher gradient than the pair distribution functions from the lower concentration
at nl3 = 0.019 and the higher concentration at nl3 = 0.578. The higher gradient
along with the fact that the volume fraction is lower ensures that the sedimentation
velocity at nl3 = 0.154 is higher than at nl3 = 0.578 despite the fact that the degree of
orientation with gravity is slightly higher at nl3 = 0.578. Compared to sedimentation at
an average number density of nl3 = 0.019, the higher gradient of the pair distribution
function together with the higher probability of orientation of a fibre with gravity at
nl3 = 0.154 results in a larger sedimentation rate even though the average number
density is bigger. Thus the sedimentation velocity of the fibres has a maximum due
to a combination of the changes in the structure of the suspension and the average
orientation of the fibres in the suspension.

Figure 11 demonstrates that the particle velocity distributions from the simulation
results with dz/dw = 8 and experimental observations of Herzhaft & Guazzelli (1999)
are in good agreement at a bulk number density of nl3 = 0.05 and fibre aspect ratio
of A = 11. The simulations predict that few particles have a negative sedimentation
velocity at any given point in time after the average quantities of the suspension
attain a steady state. However, the experiments indicate that a significant fraction of
particles in the suspension have a sedimentation velocity which is negative.

A related problem is that of the velocity fluctuations shown in figure 14. The cal-
culated values of the velocity fluctuations for the sedimenting particles quantitatively
agree with the experimentally measured fluctuations for both aspect ratios of A = 11
and 32 as long as the bulk number density is lower than 0.1. Also, the calculated
ratio of the vertical to horizontal fluctuations remains nearly constant over the entire
range of concentrations at a value of 3 as observed in the experiments. However, the
velocity fluctuations do not increase as the number density increases as seen in the
experimental measurements.

The better agreement between the simulations and experiments for the velocity
fluctuations calculated at low, as opposed to high, number densities suggests that
the algorithm may not be accurately accounting for the hydrodynamic interactions
at higher number densities. Our simulation algorithm contains some inherent as-
sumptions which might be responsible. First, the slender-body theory of Batchelor
(1970) models a particle of very high aspect ratio, whereas these simulations are for
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fibres of moderately high aspect ratios. Also, the force distribution on each particle
includes only the linear terms as seen in equation (2.13). Retaining terms of higher
order in the expansion of the force distribution could noticeably alter the results
of the calculations at high number densities. We have also made some simplify-
ing approximations when calculating the lubrication interactions between pairs of
fibres.

The periodic boundary conditions are another possible source of error in the
calculation of the velocity fluctuations shown in figure 14 at the higher number
densities. Increasing the average number density while keeping the number of particles,
N, constant at 128 lowers the size of the periodic box and the separation distances
between the neighbouring images of a particle. Since the periodic cell is elongated
in the vertical direction for the data presented in figure 14, the horizontal dimension
of the periodic cell becomes critically small at the higher number densities. For
example, the ratio of cell width in the horizontal direction to fibre length (as given
by dw/2, since dw is the width of the periodic cell as non-dimensionalized by the
fibre half-length) is 4.72 at the lowest average number density used in the simulations
with a fibre aspect ratio of A = 11. At the highest concentration of nl3 = 0.578, the
ratio dw/2 equals 1.5, indicating a separation of one half-length between the tips of
neighbouring particles having a horizontal orientation which is aligned with the edge
of the periodic cell. For an aspect ratio of A = 32 and number density of nl3 = 1.305,
the ratio dw/2 has a value of 1.15. For all of the simulations, therefore, the fibres are
free to rotate without colliding with their nearest neighbouring images. However, the
close spacing between the neighbouring images of fibres which exists at the higher
number densities may be altering the dynamics of the particles.

4.3. Comparison of orientation results with experiments

The simulation results confirm the experimental observation that the fibres in the
suspension preferentially align with gravity during the sedimentation process. This
alignment of the rigid fibres is induced by the average flow field which results from the
formation of clusters of particles. The downward convection of a cluster of particles
creates a shear gradient between the regions of high and low concentration. This
gradient in the average flow velocity is plotted in figure 3 which shows the average
concentration and vertical velocity of the fluid as a function of horizontal position
for the case of nl3 = 0.154, A = 11, N = 128, and dz/dw = 2. This fluid shear gradient
tends to align particles in the gravitational direction, much like a rigid fibre of infinite
aspect ratio aligns with the flow direction in a simple shear flow.

The simulation results shown in figure 15 predict a smooth functional relationship
between the orientation parameter and nl3, but in the text of their paper, Herzhaft &
Guazzelli (1999) claim that there is no trend in the orientation parameter. However,
the simulations indicate a trend with which the experimental data qualitatively agree.
At small number densities for A = 11 and A = 32, the orientation parameter decreases,
more distinctly for the A = 11 case. Also for A = 11, the simulations indicate that the
orientation parameter is quickly approaching zero as the bulk number density goes
to zero, which is expected. At high number densities and for A = 11, the orientation
parameter appears to approach a constant value for the simulations. Except for the
point at nl3 = 0.5, the experimental values appear to do the same. For A = 32, the
orientation parameter increases slightly for the highest number density plotted for
both the simulation and experiment.

Although the simulations predict that the fibres preferentially align with gravity, the
steady and convergent simulation results of figure 15 indicate that the sedimenting
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fibres do not align with gravity to as high a degree as the fibres observed in the
experiments for the same aspect ratio and number density. This fact is also evident in
the plots of orientation distribution as seen in figure 8. The origins of the difference
can possibly be attributed to the same reasons listed above for the lack of agreement
in the velocity fluctuations between the simulations and experiments. The possibili-
ties include errors resulting from approximations of the hydrodynamic interactions
between particles and the issues arising from the periodic boundary conditions.

Besides the fact that the simulations are under predicting the degree of alignment,
the results also indicate that changing the ratio of height to width for the periodic cell
affects the orientation of the particles in the simulated suspension. The slower decay
of the autocorrelation function of the orientation for the vertical direction (figure 10)
and the lower degree of alignment with gravity (figure 8 and figure 9) for the fibres in
the simulation cell of aspect ratio dz/dw = 8 can both be attributed to the difference
in the structure of the suspension and the resulting velocity field. As already discussed
in relation to the average sedimentation velocity, the particles in the periodic box with
a height to width ratio of 2 are arranged in a cluster which is highly concentrated in
the horizontal direction. This highly concentrated cluster creates the strong shear flow
seen in figure 3 which acts to align the particles. For the periodic cell with the higher
ratio of dz/dw = 8, the cluster of particles is not as concentrated and the resulting
difference in velocity between concentrated and non-concentrated regions is smaller.
Consequently, the flow field does not align the particles as strongly and does not mix
the vertical component of the orientations as rapidly.

Extending the periodic cell in the gravitational direction enables calculation of
a convergent value for the sedimentation velocity by changing the microstructure
of the suspension, as argued in § 4.1. Unfortunately, as described in the previous
paragraph, the change in structure also has a detrimental impact upon the orientation
distribution. This suggests that the particle microstructure is probably still not a fully
accurate representation of the structure which exists in the experiments. Of course,
as discussed in § 4.2, the structure is highly confined in the horizontal direction, since
the periodic cell has a relatively small width. If the horizontal dimension of the
periodic cell could be increased while holding the height constant, the problem with
the orientation distribution might be corrected. However, testing this idea requires
performing simulations which have a significantly larger number of particles than
N = 128.

Whether the ratio of height to width for the periodic box equals 2 or 8, the
vertical component of the autocorrelation function decreases more rapidly than the
horizontal component at short times. This can be explained by once again referring to
the average flow field which is plotted in figure 3 for the case of dz/dw = 8. As fibres
flow into and out of the cluster, they must cross a region of high shear caused by the
difference in average vertical velocity between the cluster and clarified fluid. A fibre
with a centre-of-mass position near this region of high shear will preferentially align
with gravity, but the alignment will experience small fluctuations. If the fluctuations
tilt the end of the fibre pointing in the gravitational direction away from the region of
concentrated particles where the sedimentation velocity is relatively high, the particle
will rapidly flip. During the vertical rotation, the fibre remains oriented in the plane of
shear with the horizontal projection of the orientation vector always pointing toward
or away from the region of high concentration. This flipping of particles due to the
shear gradient in the sedimenting suspension causes the autocorrelation of the vertical
orientation to decay rapidly. A similar mechanism which would quickly decorrelate
the horizontal components of orientation of the fibres does not exist.
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4.4. Structure of the suspension

The stability calculations made by Koch & Shaqfeh (1989) predict a horizontal
spacing of (nl)−1/2 between regions of high particle density. Unfortunately, in these
simulations only one cluster of particles forms in each periodic cell, so we are unable
to confirm the predicted scaling. Also, the relative dimensions of the periodic box
control the detailed structure of the suspension as seen in the comparison of the
pair distribution functions between figure 4 and figure 7. The other properties of the
suspension also change as a consequence of the alterations in the structure. Using a
ratio for the periodic box of dz/dw = 8 rather than dz/dw = 2 enables the calculation
of convergent sedimentation velocities which agree very closely with those measured
in the experiments. Some of the other properties of the sedimenting suspension do not
change as favourably. For example, the error between the simulation and experimental
results for the orientation parameter increased upon elongating the periodic box and
we have argued that this is directly due to the alteration in the suspension structure.

The maximum number of particles used in the calculations is 256, and most of
the results are for N = 128. Increasing the size of the simulation significantly beyond
256 particles may allow for the formation of multiple clusters in each periodic cell
and remove the strong dependence upon the relative dimensions of the periodic
cell. However, this is not absolutely clear; the dependence of the structure of the
suspension could arise from either the small size of the simulation or possibly the
periodic boundary conditions themselves.

Since we cite the dependence of the structure of the simulated suspension on
the relative dimensions of the periodic cell as a possible source of most of the
discrepancies between these simulations and the experimental measurements, a direct
comparison with the structure observed in the experiments is desirable. Unfortunately,
an experimental measurement of the structure of the suspension during sedimentation
has not been made. Both Herzhaft et al. (1996) and Herzhaft & Guazzelli (1999)
published images of the sedimenting fibres which clearly indicate the presence of
fibre clusters, but a quantitative analysis of the structure of the suspension was
not attempted in either study. Most specifically, the size and the anisotropy of the
clusters of particles in addition to the spacing between the clusters is not known; a
measurement of the pair distribution function would be ideal since it would contain
all of this information. Additionally, an experimental measurement of the suspension
structure would enable a valuable comparison to the horizontal spacing between
clusters of (nl)−1/2 which is predicted by the theoretical calculations of Koch &
Shaqfeh (1989).

5. Conclusions
In agreement with theoretical calculations and experiments, these simulations

demonstrate that a suspension of rigid fibres can become heterogeneous during
sedimentation. The instability which causes the demixing of the fibres during the
sedimentation process arises purely from hydrodynamic interactions between the par-
ticles. For some simulations, a small and short-ranged irreversible force was included
to assist in maintaining the excluded volume of the particles, but this force was found
to play no role in the instability.

The effect of the instability is readily apparent from direct visualizations of the
simulations which show that some regions of the periodic simulation cell contain
clusters of particles whereas other regions have a deficit of particles. We have quanti-
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fied the structure of the suspension by calculating the pair distribution function. The
result clearly demonstrates the existence of a non-uniformity in the relative positions
of the centres of mass for pairs of fibres in the suspension. The pair distribution
function also has an anisotropic solution which reflects the elongation of the cluster
of particles in the direction of gravity.

For the first time, we have calculated via computer simulation a steady and conver-
gent sedimentation velocity for a suspension of rigid fibres sedimenting in the limit
of zero Reynolds number. The average sedimentation velocities agree closely with
those observed in the experiments of Herzhaft & Guazzelli (1999) for the range of
aspect ratios and number densities used in the calculations. This agreement includes
the accurate prediction of the simulations that a maximum exists in the average
sedimentation velocity as a function of the average number density. Furthermore, the
calculations demonstrate that the formation of particle clusters due to the hydrody-
namic instability can cause the sedimentation rate of a suspension of rigid fibres to
exceed the maximum rate of sedimentation for an isolated fibre in an infinite fluid.

The simulation results confirm the experimental observations of Herzhaft &
Guazzelli (1999) that fibres in suspension tend to align with gravity during sed-
imentation. The average orientations from the simulations were compared to the
experiments and found to be in qualitative agreement. The degree of alignment with
the gravitational direction, though, was consistently lower than that seen in the exper-
iments for the aspect ratios and number densities which were simulated. In addition
to comparing the average particle orientations, we have compared the calculated
orientation distributions with experimental results and have reported on the dynamic
changes in orientation of the particles.

The fact that the sedimentation of suspensions of non-colloidal, rigid fibres is
unstable and that the instability can induce an inhomogeneous distribution of particles
and an enhanced sedimentation velocity is now well established. The supporting
research includes the original theoretical calculations of Koch & Shaqfeh (1989), the
experimental work of Herzhaft et al. (1996) and Herzhaft & Guazzelli (1999), and
the simulation results presented within this paper.

We thank Dr Donald L. Koch and Dr Elisabeth Guazzelli for their suggestions
and comments on this work. This research project was supported by a grant from the
Petroleum Research Fund of the American Chemical Society.
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